
Algebra II
Mid Term Examination

Solutions

1. Let A,B,D be square matrices of size n and let 0 denote the zero matrix.
Prove that

det

(
A B
0 D

)
= det(A)det(D).

Ans. Let

(
A B
0 D

)
=



a11 . . . a1n b11 . . . b1n
. . . . . . . . . .
an1 . . . ann bn1 . . . bnn
0 . . . 0 d11 . . . d1n
. . . . . . . . . .
0 . . . 0 dn1 . . . dnn

 .

Let us write

(
A B
0 D

)
= S =



s11 . . . s1n s1 n+1 . . . s1 2n

. . . . . . . . . .
sn1 . . . snn sn n+1 . . . sn 2n

sn+1 1 . . . sn+1 n sn+1 n+1 . . . sn+1 2n

. . . . . . . . . .
s2n 1 . . . s2n n s2n n+1 . . . s2n 2n

 .

det(S) =
∑

σ(−1)σs1 σ(1)s2 σ(2) . . . s2n σ(2n), where σ is an element of the
symmetric group S2n and (−1)σ is +1 is σ is an even permutation and −1 if
σ is an odd permutation. Note that sn+1 1, . . . , sn+1 n, . . . , s2n 1, . . . , s2n n

are all zero. Therefore, right hand side of the above equation will have
non-zero contribution only when {σ(1), . . . , σ(n)} ⊆ {1, . . . , n} and {σ(n +
1), . . . , σ(2n)} ⊆ {n+ 1, . . . , 2n}. Hence,

det(S) =
(∑

α

(−1)αs1 α(1) . . . sn α(n)

) (∑
β

(−1)βsn+1 β(n+1) . . . s2n β(2n)

)
,

where α ∈ Sn is a permutation of {1, . . . , n} and β ∈ Sn is a permutation
of {n+ 1, . . . , 2n}. Note that α ◦ β (here composition is juxtaposition) is an
element of S2n and since their cycles are disjoint we will have (−1)α(−1)β =
(−1)α◦β. Therefore, det(S) = det(A)det(D).



2. Let A be an n × n matrix with integer entries aij . Prove that A−1 has
integer entries if and only if det(A) = ±1.
Ans. Let us first assume entries of A belong to a commutative ring in which
±1 is invertible and det(A) = ±1. Since det(A) is invertible, A−1 exists and
A−1 = 1

det(A)Adj(A). Since all the entries of A are integers, all the entries

of Adj(A) will also be integers. Hence from the formula it is clear that all
the entries of A−1 will be integers.

Next we assume A−1 exists and all the entries of A−1 are integers. Since
all the entries of A are integers, all the entries of Adj(A) will also be integers.
Hence it follows from the formula A−1 = 1

det(A)Adj(A) that det(A) must be
±1.

3. Let i denote an element whose square is −1. Prove that the set {a +
ib|a, b ∈ Z/3Z} is a field under natural addition and multiplication.
Ans. It is routine to check with respect to natural addition and multi-
plication the above set forms a commutative ring. It remains to check
that every non-zero element in the above set has a multiplicative inverse
in the set itself. Let a + ib be a non-zero element, i.e, both a and b are
not zero. Therefore the choices for the ordered pair (a, b) could be either of
(0, 1), (0, 2), (1, 1), (1, 2), (1, 0), (2, 0), (2, 1) and in all these cases a2+b2 = ±1
in Z/3Z. Therefore the inverse of (a+ ib)−1 = a

a2+b2
− i b

a2+b2
belongs to the

above set.

4. Let V be a finite dimensional vector space over a field F . Prove that any
linearly independent subset of V is a subset of a spanning linearly indepen-
dent subset of V .
Ans. See Topics in Algebra, I.N. Herstein (2nd Ed), Lemma 4.2.5 or Abstract
Algebra, Dummit and Foote (2nd Ed), Chapter 11, Section 1, Corollary 5.

5. Show that the subset W = {(x1, . . . , xn)|x1 + 2x2 + · · ·+ nxn = 0} of Rn
is a subspace and find a basis for W .
Ans. Note that if (x1, . . . , xn) ∈ W and (y1, . . . , yn) ∈ W , then (x1 +
y1, . . . , xn + yn) ∈ W and (αx1, . . . , αxn) ∈ W , for all α ∈ R. This
shows W is a subspace of Rn. Also, note that W is the solution space
of a single linear homogeneous equation in Rn and hence W is of dimen-
sion n − 1. Therefore if we can exhibit a set of n − 1 linearly independent
vectors in W that will form a basis for W . Clearly the collection of vec-
tors (−2, 1, 0, . . . , 0), (−3, 0, 1, . . . , 0), . . . , (−n, 0, 0, . . . , 1) are n − 1 linearly
independent vectors in W which will form a basis.

6. Prove that a square matrix with entries from a field F is invertible if and
only if its columns are linearly independent.



Ans. Let us consider a n× n matrix

A =


a11 . . . an1
. . . . .
. . . . .
an1 . . . ann

 = (A1, . . . , An)

where A1, . . . , An are n columns of A. An n × n matrix induces a linear
transformation from Fn to Fn. First let us assumeA is invertible. Therefore,
A induces an isomorphism. If the columns of A are not linearly independent
then we will find b1, . . . , bn, not all zero such that b1A1 + · · · + bnAn = 0,
i.e, A(b1, . . . , bn)t = (0, . . . , 0)t. Also, A(0, . . . , 0)t = (0, . . . , 0)t. This shows
that the transformation induced by A is not injective. This is a contradiction
and hence the columns of A are linearly independent.

Let us assume the columns of A are linearly independent and hence they
form a basis for Fn. Let e1, . . . , en be the standard basis of Fn where ei is a
row vector of length n with 1 at the ith position and zeros elsewhere. Since
the columns of A form a basis for Fn, for each ei there exists b1i, . . . , bni
such that A1b1i + · · ·+Anbni = ei, i.e, A(b1i, . . . , bni)

t = (ei)
t. Consider the

matrix

B =


b11 . . . bn1
. . . . .
. . . . .
bn1 . . . bnn


Note that AB = In, where In is the n × n identity matrix. Hence A is

invertible.


